Ivan Kolar (Masaryk University, Brno, Czech Republic) *Connections on principal prolongations of principal bundles*

Abstract: We study principal connections on the *r*-th order principal prolongation $W^r P$ of a principal bundle P(M, G), dim M = m. The bundle $W^r P \rightarrow M$, which is a principal bundle with structure group $W_m^r G$, plays a fundamental role both in the geometric theory of jet prolongations of associated bundles and in the gauge theories of mathematical physics. If $G = \{e\}$ is the oneelement group, then $W^r(M \times \{e\}) = P^r M$ is the *r*-th order frame bundle of the base M. So some our results can be viewed as a generalization of the theory of connections on $P^r M$. In particular, there is a canonical $\mathbb{R}^m \times \text{Lie}(W_m^{r-1}G)$ valued 1-form Θ_r on $W^r P$. The torsion of a connection Δ on $W^r P$ is the covariant exterior differential $D_{\Delta}\Theta_r$.

Let EP = TP/G be the Lie algebroid of P. Its r-jet prolongation $J^r(EP \to M)$ coincides with the Lie algebroid of W^rP . We start from the fact that the connections Δ on W^rP are in bijection with the linear splittings $\delta : TM \to J^r(EP)$. The torsion $\tau(\delta)$ of δ can be defined by means of the jet prolongation of the bracket of EP. We deduce that $D_{\Delta}\Theta_r$ and $\tau(\delta)$ are naturally equivalent. Further, analogously to the case of P^rM , the torsion free connections on W^rP are in bijection with the reductions of $W^{r+1}P$ to the subgroup $G_m^1 \times G \subset W_m^{r+1}G$.

According to the general theory, every principal connection Γ on P and a linear r-th order connection $\Lambda_r : TM \to J^rTM$ induce, by means of flows, a connection $\mathcal{W}^r(\Gamma, \Lambda_r)$ on W^rP . We clarify that $\mathcal{W}^r(\Gamma, \Lambda)$ can be easily constructed in the algebroid form. This enables us to deduce several original geometric results. – We also extend some our constructions and results to an arbitrary fiber product preserving bundle functor on the category of fibered manifolds with m-dimensional bases and fibered manifold morphisms with local diffeomorphisms as base map.