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Unique determination of domains

Abstract: This survey lecture is devoted to relatively recent results closely
connected with some 200 years old classical problems.

The starting point is a familiar Cauchy theorem about the unique determina-
tion of convex polyhedrons (in Euclidean 3-space R3) by their unfoldings. Later the
problems of unique determination of convex surfaces were studied by Min-
kowski, Hilbert, Weyl, Blashke, Cohn-Vossen and other prominent mathemati-
cians. Yet the greatest success was achieved by A.D. Aleksandrov and his
school. We want to mention the following classical theorem by A.V. Pogorelov
[1]: if two bounded closed convex surfaces in R3 are isometric in their inner metrics,
then these surfaces are congruent, i.e., one of them can be translated to the other by a
motion.

A new development of the subject is due to A.P. Kopylov. Kopylov of-
fered a new approach [2], which essentially extends the scope of the above
problems. He suggested to study the unique determination of domains by re-
lative metrics of their boundaries, i.e., the metric on the boundary is defined
as a continuation of the inner metric of the domain. So, the foregoing clas-
sical problems are special cases of the problem of the unique determination
of domains by relative metrics of their boundaries, namely, when the com-
plementary sets of the domains are convex sets. Moreover, a new class of
very interesting problems appears in Kopylovs approach. These new prob-
lems were studied by A.D. Aleksandrov and also by V.A. Aleksandrov, M.K.
Borovikova, A.V. Kuzminykh, M.V. Korobkov and others (in this connection,
see, e.g., [2][12]). They discovered the following new phenomena: domains
are uniquely determined not only in the classical cases (when the complemen-
tary sets of the domains are convex bounded sets), but also when domains are
convex and bounded [2]; strictly convex (A.D. Aleksandrov); bounded with
piece-smooth boundary [3]; having non-empty bounded complements, where
their boundaries are connected smooth (n− 1)-manifold without edge [4]; and
others.

In 2006, A.P. Kopylov considered a new unique determination problem of
conformal type and proves the following assertion (see [13] and [14]): if n ≥ 4,
then any bounded convex polyhedral domain U ⊂ Rn is uniquely determined by the
relative conformal moduli of its boundary condensers in the class of all bounded convex
polyhedral domains V ⊂ Rn.

We also discuss some problems related to the theory of the unique determi-
nation of the isometric and conformal types of domains in Rn.
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