Jan Kurek (Maria Curie Sklodowska University, Lublin, Poland) Wlodzimierz M. Mikulski (Jagiellonian University, Cracow, Poland) *Like jet prolongation functors of affine bundles*

Abstract: Let $F : \mathcal{AB}_m \to \mathcal{FM}$ be a covariant functor from the category \mathcal{AB}_m of affine bundles with *m*-dimensional bases and affine bundle maps with local diffeomorphisms as base maps into the category \mathcal{FM} of fibred manifolds and their fibred maps. Let $B_{\mathcal{AB}_m} : \mathcal{AB}_m \to \mathcal{M}f$ and $B_{\mathcal{FM}} : \mathcal{FM} \to \mathcal{M}f$ be the respective base functors.

A gauge bundle functor on AB_m is a functor F as above satisfying:

(i) (Base preservation) $B_{\mathcal{FM}} \circ F = B_{\mathcal{AB}_m}$. Hence the induced projections form a functor transformation $\pi : F \to B_{\mathcal{AB}_m}$.

(ii) (Localization) For every inclusion of an open affine subbundle $i_{E|U}$: $E|U \to E, F(E|U)$ is the restriction $\pi^{-1}(U)$ of $\pi : FE \to B_{AB_m}(E)$ over U and $Fi_{E|U}$ is the inclusion $\pi^{-1}(U) \to FE$.

A gauge bundle functor F on \mathcal{AB}_m is fiber product preserving if for every fiber product projections $E_1 \stackrel{pr_1}{\leftarrow} E_1 \times_M E_2 \stackrel{pr_2}{\longrightarrow} E_2$ in the category \mathcal{AB}_m $FE_1 \stackrel{Fpr_1}{\leftarrow} F(E_1 \times_M E_2) \stackrel{Fpr_2}{\longrightarrow} FE_2$ are fiber product projections in the category \mathcal{FM} . In other words $F(E_1 \times_M E_2) = F(E_1) \times_M F(E_2)$ modulo the restriction of (Fpr_1, Fpr_2) .

The most important example of fiber product preserving gauge bundle functor on \mathcal{AB}_m is the *r*-jet prolongation functor $J^r : \mathcal{AB}_m \to \mathcal{FM}$, where for an \mathcal{AB}_m -object $p : E \to M$ we have $J^r E = \{j_x^r \sigma \mid \sigma \text{ is a local section of } E, x \in M\}$ and for a \mathcal{AB}_m -map $f : E_1 \to E_2$ covering $\underline{f} : M_1 \to M_2$ we have $J^r f : J^r E_1 \to$ $J^r E_2, J^r f(j_x^r \sigma) = j_{f(x)}^r (f \circ \sigma \circ \underline{f}^{-1}), j_x^r \sigma \in J^r E_1.$

The first main result in this paper is that all fiber product preserving gauge bundle functors F on \mathcal{AB}_m of finite order r are in bijection with so called admissible systems, i.e. systems (V, H, t, 1), where V is a finite dimensional vector space over \mathbb{R} , $\mathbf{1} \in V$ is an element, $H : G_m^r \to GL(V)$ is a smooth group homomorphism from $G_m^r = invJ_0^r(\mathbb{R}^m, \mathbb{R}^m)_0$ into GL(V) with $H(\xi)(\mathbf{1}) = \mathbf{1}$ for any $\xi \in G_m^r, t : \mathcal{D}_m^r \to gl(V)$ is a G_m^r -equivariant unity preserving associative algebra homomorphism from $\mathcal{D}_m^r = J_0^r(\mathbb{R}^m, \mathbb{R})$ into gl(V).

The second main result is that any fiber product preserving gauge bundle functor on AB_m is of finite order.